Stacked Robust Autoencoder for Classification

نویسندگان

  • Janki Mehta
  • Kavya Gupta
  • Anupriya Gogna
  • Angshul Majumdar
  • Saket Anand
چکیده

In this work we propose an lp-norm data fidelity constraint for training the autoencoder. Usually the Euclidean distance is used for this purpose; we generalize the l2-norm to the lp-norm; smaller values of p make the problem robust to outliers. The ensuing optimization problem is solved using the Augmented Lagrangian approach. The proposed lp -norm Autoencoder has been tested on benchmark deep learning datasets – MNIST, CIFAR-10 and SVHN. We have seen that the proposed robustautoencoder yields better results than the standard autoencoder (l2-norm) and deep belief network for all of these problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Porosity classification from thin sections using image analysis and neural networks including shallow and deep learning in Jahrum formation

The porosity within a reservoir rock is a basic parameter for the reservoir characterization. The present paper introduces two intelligent models for identification of the porosity types using image analysis. For this aim, firstly, thirteen geometrical parameters of pores of each image were extracted using the image analysis techniques. The extracted features and their corresponding pore types ...

متن کامل

Remote Sensing Image Classification Based on Stacked Denoising Autoencoder

Focused on the issue that conventional remote sensing image classification methods have run into the bottlenecks in accuracy, a new remote sensing image classification method inspired by deep learning is proposed, which is based on Stacked Denoising Autoencoder. First, the deep network model is built through the stacked layers of Denoising Autoencoder. Then, with noised input, the unsupervised ...

متن کامل

Experiments on classification of electroencephalography (EEG) signals in imagination of direction using Stacked Autoencoder

This paper presents classification methods for electroencephalography (EEG) signals in imagination of direction measured by a portable EEG headset. In the authors’ previous studies, principal component analysis extracted significant features from EEG signals to construct neural network classifiers. To improve the performance, the authors have implemented a Stacked Autoencoder (SAE) for the clas...

متن کامل

Learning Stereo Features with Stacked Autoencoders

Single-layer stacked autoencoders have been shown to be successful in training artificial neurons with receptive fields that are similar to those found in the V1 cortex, but on monocular data. In this project we investigate extending a single-layer stacked autoencoder network to learn receptive fields on stereo data, and evaluate them with respect to their effectiveness as features for object c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016